0 1 . 1 Figure 1 shows a logic gate symbol.

Write the name of the logic gate underneath the figure.

[1 mark]

Figure 1



Answer:

0 1. 2 Figure 2 shows a logic gate symbol.

Figure 2



Complete the truth table below for the logic gate shown in Figure 2.

[1 mark]

| Α | В | Q |
|---|---|---|
| 0 | 0 |   |
| 0 | 1 |   |
| 1 | 0 |   |
| 1 | 1 |   |

[3 marks]



0 2 . 1 State the name of the logic gate represented by the truth table shown in Figure 1. [1 mark]

Figure 1

| Α | В | Q |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

| Answer: |
|---------|
|---------|

- 0 2 . 2 A factory has a machine for filling bottles on a conveyor belt.
  - Q represents the signal to move the conveyor belt on. When Q is set to true the belt will move on.
  - A is a sensor which outputs true if a bottle is present.
  - B is a sensor which outputs true if a bottle is full.
  - C is a sensor which outputs true if a bottle is correctly positioned.
  - D is a sensor which outputs true if the next section has a bottle in it.

The conveyor belt is able to move if both of these conditions are true:

- a bottle is full and correctly positioned or there is no bottle present
- there is no bottle in the next section.

In the box below, draw a logic circuit for the machine.

[3 marks]



| 0 2 . 3 | De Morgan's laws can be applied to enable a combination of logic gates to be replaced by a single gate that produces the same output. |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|
|         | What single gate could replace the combination of gates in the expression $\overline{\overline{A}\cdot\overline{B}}$ ?<br>[1 mark     |
|         |                                                                                                                                       |
|         |                                                                                                                                       |

0 3. 1 Complete the truth table for A NAND B.

[1 mark]

| A | В | A NAND B |
|---|---|----------|
| 0 | 0 |          |
| 0 | 1 |          |
| 1 | 0 |          |
| 1 | 1 |          |

0 3. 2 A XOR B can be implemented as a logic circuit without using an XOR gate.

Using **only** AND, OR and NOT gates draw a circuit that will produce an output **Q** which is logically equivalent to **A XOR B**.



0 4. 1 State which logic gate has the truth table shown in Figure 4.

[1 mark]

Figure 4

| Α | В | Q |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

| Answer |  |  |  |
|--------|--|--|--|
|        |  |  |  |

0 4. 2 State the logic gate that is represented by the symbol shown in Figure 5.

[1 mark]

Figure 5



| Answer | r |  |
|--------|---|--|
|        |   |  |

0 4.3 Draw the logic circuit for the following Boolean expression.

$$Q = \overline{\overline{A \cdot B} \, + C}$$

[2 marks]



0 4 . 4 Complete the truth table below.

| A | В | B | $\left(\mathbf{A} + \overline{\mathbf{B}}\right)$ | $\left(\mathbf{A} + \overline{\mathbf{B}}\right) \cdot \mathbf{B}$ |
|---|---|---|---------------------------------------------------|--------------------------------------------------------------------|
| 0 | 0 |   |                                                   |                                                                    |
| 0 | 1 |   |                                                   |                                                                    |
| 1 | 0 |   |                                                   |                                                                    |
| 1 | 1 |   |                                                   |                                                                    |

Using the final column, give a simplified Boolean expression for

$$(A + \overline{B}) \cdot B$$

[3 marks]

Answer\_

## **0 5 . 1 Figure 3** shows a circuit diagram.

Figure 3



Complete the truth table below for the circuit shown in Figure 3.

[3 marks]

| Α | В | С | L | M | N | Х | Y |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 |   | 0 |   | 0 |   |
| 0 | 0 | 1 |   | 0 |   | 1 |   |
| 0 | 1 | 0 |   | 0 |   | 1 |   |
| 0 | 1 | 1 |   | 1 |   | 0 |   |
| 1 | 0 | 0 |   | 0 |   | 1 |   |
| 1 | 0 | 1 |   | 1 |   | 0 |   |
| 1 | 1 | 0 |   | 0 |   | 0 |   |
| 1 | 1 | 1 |   | 0 |   | 1 |   |

| 0 5 . 2 | Using Figure 3, write a Boolean expression for output Y in terms of inputs A, | B and C. |
|---------|-------------------------------------------------------------------------------|----------|
|         | [:                                                                            | 2 marks] |

**Y** = \_\_\_\_

**0 6 . 1 Figure 2** shows the symbol for a logic gate.

Figure 2



State the name of the logic gate shown in Figure 2.

[1 mark]

0 6.2 Figure 3 shows a logic circuit.

Figure 3



Complete the truth table for the logic circuit in Figure 3.

[2 marks]

| A | В | С | L | M | Z |
|---|---|---|---|---|---|
| 0 | 0 | 0 |   |   |   |
| 0 | 0 | 1 |   |   |   |
| 0 | 1 | 0 |   |   |   |
| 0 | 1 | 1 |   |   |   |
| 1 | 0 | 0 |   |   |   |
| 1 | 0 | 1 |   |   |   |
| 1 | 1 | 0 |   |   |   |
| 1 | 1 | 1 |   |   |   |

0 6. 3 Figure 4 shows a logic circuit.

Figure 4



Write a Boolean expression for Q.

[3 marks]

| 0 | 6 | 4     | Using the rules of Boolean algebra, simplify the following expression.  |
|---|---|-------|-------------------------------------------------------------------------|
|   | • | • _ • | Coming the raise of Beelean algebra, simplify the following expression: |

$$\overline{W} \cdot X \cdot Z + W \cdot Z + X \cdot Y \cdot \overline{Z} + \overline{W} \cdot X \cdot Y \cdot 1$$

| You <b>must</b> show your working. | [4 marks] |
|------------------------------------|-----------|
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |
| Final answer                       |           |